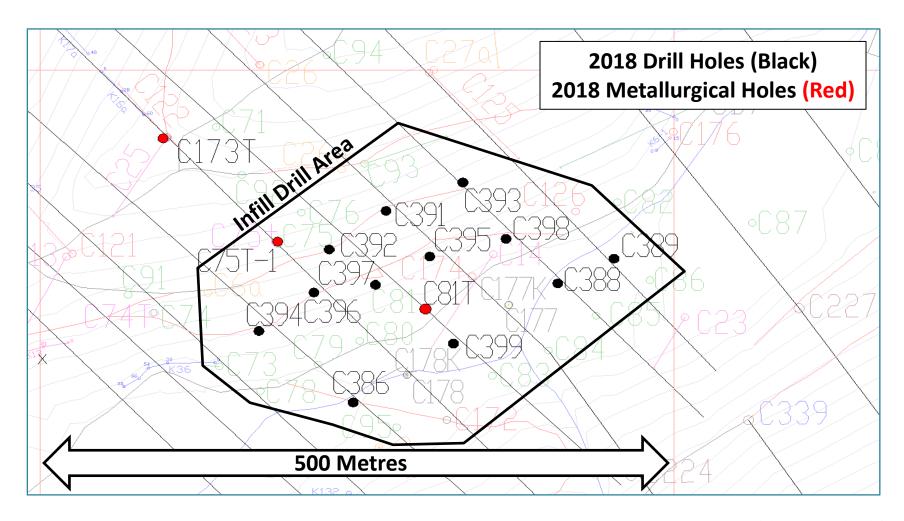

Kun-Manie Nickel and Copper Project 30 June 2018 Drill Update

Maly Kurumkon / Flangovy Drill Status - Complete

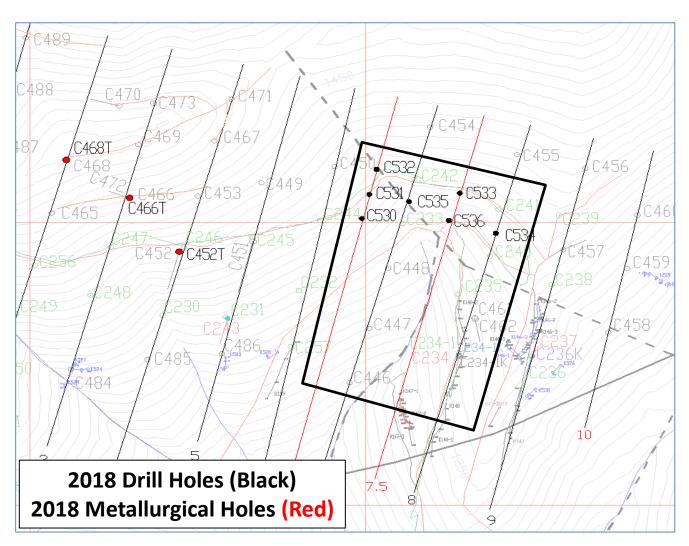
Maly Kurumkon / Flangovy Drill Results – (ASL – RFA)



Hole	From (m)	To (m)	Length (m)	Ni %	Cu %	Vertical Thickness (m)
C507	27.1	37.6	10.5	0.76	0.21	10.1
C307	48.1	55.4	7.3	0.58	0.18	7.1
C508	59.6	65.6	6.0	0.59	0.22	5.8
C508	74.6	82.0	7.4	0.67	0.16	7.1
	86.0	92.0	6.0	0.98	0.28	5.8
C509	96.5	110.0	13.5	0.67	0.21	13.0
	113.0	120.8	7.8	0.63	0.15	7.5
C510	124.6	129.0	4.4	0.60	0.09	4.3
C310	136.5	141.4	4.9	0.55	0.17	4.7
C511	143.6	150.4	6.8	0.79	0.16	6.6
C511	160.5	166.0	5.5	0.72	0.10	5.3
C512	208.3	215.8	7.5	1.02	0.23	7.2
C512	227.8	232.3	4.5	0.77	0.20	4.3
C513	82.0	146.0	64.0	0.89	0.22	61.8
C514	63.5	94.0	30.5	0.93	0.25	29.5
C514	97.0	117.6	20.6	0.86	0.20	19.9
	130.3	146.5	16.2	0.55	0.16	15.6
C515	149.5	173.5	24.0	0.61	0.18	23.2
	185.5	191.3	5.8	0.63	0.14	5.6
C516	208.3	212.8	4.5	0.65	0.18	4.3
	221.6	226.9	5.3	0.89	0.24	5.1
C517	3.0	39.0	36.0	0.82	0.25	34.8
	43.5	59.3	15.8	0.52	0.26	15.3
	62.5	74.7	12.2	0.83	0.23	11.8

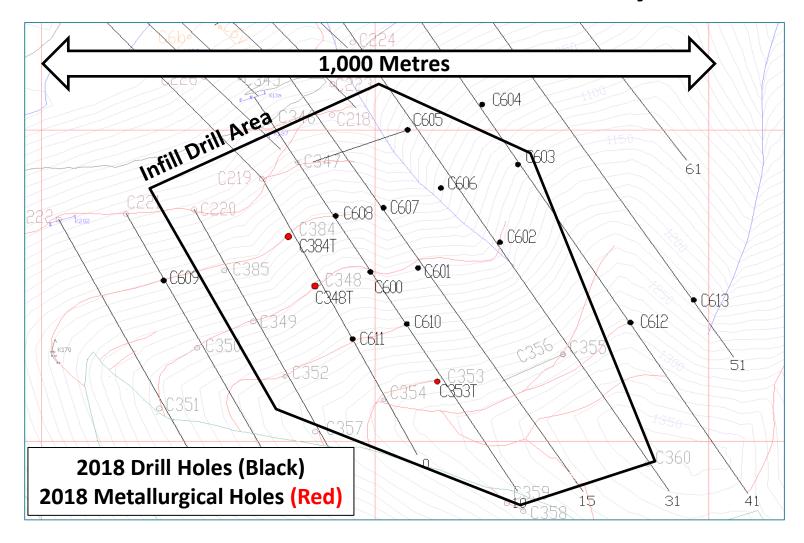
Hole	From (m)	To (m)	Length (m)	Ni %	Cu %	Vertical Thickness (m)
C518	153.0	157.5	4.5	0.60	0.17	4.3
C318	166.5	172.5	6.0	0.76	0.22	5.8
C519	131.1	137.0	5.9	0.93	0.25	5.7
C319	146.7	155.5	8.8	0.78	0.32	8.5
C520	99.6	107.0	7.4	0.86	0.22	7.1
C520	113.0	122.0	9.0	0.82	0.20	8.7
C521	5.2	30.5	25.3	0.92	0.26	24.4
C521	41.4	66.4	25.0	1.02	0.18	24.2
CE22	183.0	193.5	10.5	0.71	0.18	10.1
C522	198.0	206.3	8.3	0.88	0.18	8.0
	104.2	122.0	17.8	0.72	0.26	17.2
C523	131.0	146.9	15.9	0.59	0.18	15.4
C525	151.3	160.0	8.7	0.66	0.23	8.4
	170.0	181.5	11.5	0.87	0.23	11.1
CE24	57.3	64.2	6.9	1.38	0.27	6.7
C524	68.4	129.5	61.1	0.87	0.11	59.0
C525	20.5	41.5	21.0	0.87	0.28	20.3
	80.5	92.9	12.4	0.62	0.20	12.0
2018 Avg.	30.2 m per Hole 13.7 m per Interval			0.84	0.21	
Target		3 m per 5 m per		0.76	0.20	

Ikenskoe / Sobolevsky Drill Status - Complete


Ikenskoe / Sobolevsky Drill Results - RFA

Hole	From (m)	To (m)	Length (m)	Ni %	Cu %	Vertical Thickness (m)
C386	2.9	9.8	6.9	0.92	0.30	6.9
	4.5	10.5	6.0	0.47	0.12	6.0
C388	16.5	23.8	7.3	0.72	0.30	7.3
	27.0	30.0	3.0	0.39	0.10	3.0
C201	53.5	61.0	7.5	0.74	0.25	7.5
C391	68.5	76.8	8.3	0.61	0.21	8.3
C202	67.7	77.7	10.0	0.77	0.22	10.0
C392	83.7	93.8	10.1	0.86	0.22	10.1
C394	29.5	37.0	7.5	0.75	0.23	7.5
C20F	5.5	13.0	7.5	0.71	0.17	7.5
C395	19.0	30.5	11.5	0.71	0.21	11.5
C206	34.9	39.2	4.3	0.53	0.10	4.3
C396	68.5	79.3	10.8	0.85	0.29	10.8
C397	56.5	61.0	4.5	0.59	0.15	4.5
C398	10.0	20.2	10.2	0.60	0.20	10.2
6200	23.5	33.3	9.8	1.08	0.23	9.8
C399	45.6	53.2	7.6	0.80	0.27	7.6
2018 Avg.		Hole Iterval	0.74	0.22		
Target		Hole Hole	0.79	0.20		

Kubuk Area Drill Status - Underway


Kubuk Drill Results - RFA

Hole	From (m)	To (m)	Length (m)	Ni %	Cu %	Vertical Thickness		
	124.0	133.0	9.0	0.54	0.15	9.0		
C530								
	137.5	150.4	12.9	0.96	0.24	12.9		
C531	149.8	159.0	9.2	0.56	0.16	9.2		
C532	161.4	184.4	23.0	0.44	0.12	23.0		
C533	In Sample Preparation At Site – Host Rock from 124.0 to 145.0 m							
C534	In Sample Preparation At Site – Layered Host Rock from 70.0 to 138.0 m							
C535	In Sample Preparation At Site – Layered Host Rock from 80.0 to 138.0							
C536	Drilling In Progress – Host Rock from 127.5 to 144.5 m							
2010 A.	18.0 m per Hole			0.60	0.16			
2018 Avg.	13.5 m per Interval				0.16			
Target	19.6 m per Hole			0.77	0.21			
	12.8 m per Hole				0.21			

Ikenskoe / Sobolevsky Inferred to Indicated Conversion - Underway

High Grade Resource Upgrade Drill Results - RFA

	From	То	Length	Ni	Cu	Vertical			
Hole	(m)	(m)	(m)	%	%	Thickness			
C600	166.7	209.5	42.8	0.98	0.30	42.8			
	152.0	155.0	3.0	0.91	0.20	3.0			
C601	159.6	172.1	12.5	0.88	0.24	12.5			
	176.3	205.6	29.3	1.12	0.26	29.3			
6602	201.9	209.5	7.6	0.79	0.12	7.6			
C602	212.5	229.3	16.8	0.84	0.22	16.8			
6603	271.0	278.5	7.5	0.93	0.19	7.5			
C603	287.5	293.1	5.6	0.69	0.15	5.6			
C604	235.8	238.8	3.0	0.40	0.04	3.0			
C604	247.0	253.6	6.6	0.63	0.17	6.6			
C605			No Mine	ralisation					
C606	124.0	130.9	6.9	0.79	0.17	6.9			
C607	88.0	97.0	9.0	0.44	0.13	9.0			
C607	104.5	112.0	7.5	0.98	0.20	7.5			
C608	63.0	76.0	13.0	0.92	0.23	13.0			
C608	82.0	116.5	34.5	1.09	0.27	34.5			
C609		No Mineralisation							
C610	188.5	235.0	46.5	0.85	0.28	46.5			
C611	171.6	176.5	4.9	1.08	0.23	4.9			
COII	181.0	214.0	33.0	0.57	0.23	33.0			
C612	383.2	399.4	16.2	0.71	0.20	16.2			
C613		No Mineralisation							
2018 Avg.	23.6 m per Hole 14.6 m per Interval			0.87	0.24	30 June			
Target	28.7 m per Hole 17.2 m per Hole			0.94	0.26	2018			

Analytical Results – Cautionary Comment

Analytical results presented in this and upcoming RNS announcements are derived from two sources, internally and independently generated results. The internal Company generated results are defined using one of two Niton XL2 500 X-Ray Fluorescence units ("RFA"). The RFA units provide initial results allowing for a rapid turnaround to assist in decision making to finalise drill hole site selections and are considered to be indicative and preliminary. Use of these results is not without risk if the units have not been rigorously tested and calibrated. Annually, at the beginning of every field season and on a daily basis, these units undergo a calibration protocol that uses standards provided with the units and results from existing samples that have been analysed by external facilities (ASL).

The final and definitive source of analytical results is produced by ASL located in Moscow, Russia. This fully independent, licenced and certified laboratory is the source of the information used in resource estimation. The ASL results provide a greater accuracy than that of the RFA units especially for values in excess of 1.0% nickel. RPM has reviewed the Company's sample preparation, sample collection and check assaying related to ASL and has confirmed that AMC's protocols for analytical determination meet industry standards.

Results reported within this RNS include a combination of the RFA and ASL results. The distribution of the RFA and ASL results follow:

- The May 2018 drill update included RFA only results.
- This June 2018 update includes ASL results received subsequent to the May 2018 update. The newly acquired ASL results have been incorporated into this RNS and replace the previously reported RFA analytical results generated by the Company.
- The available ASL results are limited to the first 13 of the 19 holes that have been drilled at MKF deposit.